Источники питания для сварки алюминия неплавящимся электродом

Окисная пленка на алюминии, мешающая сплавлению свари­ваемых кромок, разрушается без применения флюсов только на поверхности катодного пятна за счет катодного распыления. Пленку окислов на основном металле можно разрушить лишь тогда, когда основной металл является катодом, т. е. при сварке на обратной полярности. Но в случае сварки неплавящимся (вольфра­мовым) электродом обратная полярность неприемлема, так как на электроде, являющимся анодом, выделяется большое количе­ство тепла и вольфрам быстро оплавляется. При использовании же малых плотностей тока на электроде дуга горит неустойчиво и резко уменьшается глубина проплавления основного металла.

При сварке на прямой полярности пленка окислов не разру­шается, вследствие чего сплавление свариваемых кромок затруд­нено и получить сварное соединение высокого качества не пред­ставляется возможным. В связи с этим ручную дуговую сварку алюминия и его сплавов неплавящимся электродом в среде защит­ных газов выполняют на переменном токе. Причем в полупериоды обратной полярности сварочная ванна очищается от окисной пленки за счет катодного распыления. Пленка окислов размель­чается и интенсивно оттесняется к краям сварочной ванны. Неплавящийся электрод испытывает большую тепловую нагрузку. В полупериоды прямой полярности сильнее прогревается основной металл, температура неплавящегося электрода несколько сни­жается.

Так как сварочная ванна и капли присадочного металла защи­щены инертным газом, окисная пленка на поверхности ванны не образуется. Поверхность ванны остается зеркально чистой.

Электродами, между которыми возбуждается и горит дуга, яв­ляются вольфрамовый пруток и свариваемое изделие из алюми­ниевого сплава. Из-за различных физических состояний происхо­дит частичное выпрямление сварочного тока и напряжения. Так как мгновенные значения тока в полупериоды, когда катодом яв­ляется вольфрамовый пруток, больше соответствующих мгновен­ных значений тока в полупериоды, когда катодом является изделие, возникает постоянная составляющая сварочного тока. Опре­деляется она более интенсивной термоэлектронной эмиссией с по­верхности вольфрама, чем со свариваемого металла.

Постоянная составляющая может достигать 50% величины эффективного значения переменного тока. Она увеличивается с возрастанием тока и уменьшается с увеличением длины дуги, чистоты защитного газа и скорости сварки. При увеличении по­стоянной составляющей тока уменьшается зона катодного распыле­ния, а следовательно, ослабляется разрушение окисной пленки, затрудняется ведение сварки, уменьшается площадь проплавления основного металла, ухудшается формирование металла шва. Поэтому необходимо принимать специальные меры для уменьше­ния постоянной составляющей сварочного тока. В сварочной практике применяют три способа уменьшения ее: последователь­ное включение в сварочную цепь омического сопротивления, емкости или аккумуляторной батареи.

При сварке на переменном токе промышленной частоты в пе­риоды, когда катодом является вольфрамовый пруток, дуговой разряд протекает в основном за счет термоионной эмиссии. Это объясняется высокой температурой плавления и низкой темпера­туропроводностью вольфрама. При сварке алюминия и его спла­вов это обстоятельство обусловливает неодинаковые условия вос­становления дуги при прямой и обратной полярности. Если катодом является электрод, то дуга восстанавливается легко. Для обеспечения надежного восстановления дуги на обратной полярно­сти требуется источник с напряжением холостого хода около 200 в. Такое высокое напряжение холостого хода экономически нецеле­сообразно, и необходимы специальные меры по обеспечению безо­пасности работы сварщика.

al ustanovka gazel svarki

Рис. 1. Схема установки для ручной газоэлектрической сварки переменным током:
1 — сварочный трансформатор; 2 — балластный реостат; 3 — осциллятор; 4 — амперметр; 5 — трансформатор тока; 6 — дроссель; 7 вольтметр; 8 — защитный дроссель вольтметра; 9 — конденсатор; 10 — газоэлектрическая горелка; 11 — ротаметр; 12 — редуктор; 13 — баллон с газом; 14 — изделие.

В практике для сварки алюминия и его сплавов широко при­меняют упрощенные схемы питания дуги на базе стандартных сва­рочных трансформаторов (рис. 1).

В качестве источников питания дуги переменного тока при сварке алюминия используют сварочные трансформаторы двух ос­новных групп: с отдельным дросселем типа СТЭ-24, СТЭ-34 и др. и со встроенным дросселем типа СТН-500, СТН-700, ТСД-500, ТСД-1000 и др.

Для облегчения возбуждения сварочной дуги и обеспечения ее устойчивого горения в сварочную цепь включают осциллятор. Для регулирования силы сварочного тока и частичной компен­сации постоянной составляющей тока служат балластные рео­статы РБ-200 или РБ-300. 

 

Осцилляторы и импульсные возбудители дуги.

Осциллятор является искровым генератором  высокочастотных колеба­ний малой мощности. Высокое напряжение, которое подает осцил­лятор на дуговой промежуток в виде отдельных импульсов, облегчает за­жигание дуги в начале сварки и обеспечивает устойчивое восстано­вление сварочной дуги в полупериоды обратной полярности, когда напряже­ние возбуждения дуги относительно велико и превышает напряжение ис­точников питания.

Сварочные осцилляторы делятся на две основные группы: парал­лельные, подключаемые параллель­но дуговому промежутку, ОСП-1, ОСП-3-2, М-3 и др. и последователь­ные, включаемые последовательно дуговому промежутку в разрыв сварочной цепи, ОСП-ЗОО, ОСП-88-1 и др. (рис. 1, а, б).

al podkl oscillyatorov

Рис. 1. Схемы включения осцилляторов в сварочную цепь: а — параллельно дуговому проме­жутку; б — последовательно дуго­вому промежутку. 

 

Преимущества параллельных осцилляторов в том, что их можно использовать при любом сварочном токе. Однако такие осцилля­торы имеют и следующие существенные недостатки: высокочас­тотное напряжение на выходе, достигающее при отсутствии дуги нескольких киловольт, падает на обмотках сварочного трансфор­матора и дросселя, что часто приводит к пробою изоляции и выходу оборудования из строя; для обеспечения высокого напряжения необходимо повышать мощность осцилляторов, так как при работе параллельного осциллятора сварочный источник питания шунти­рует его выход; прохождение т. в. ч. по обмоткам трансформатора приводит к появлению сильных радиопомех в силовой сети, поле радиопомех создается не только выходной цепью осциллятора, но и всей сварочной цепью.

В последовательном осцилляторе благодаря наличию блокиро­вочного конденсатора высокочастотное напряжение на сварочном трансформаторе обычно не превышает нескольких десятков вольт, что исключает пробой изоляции сварочного источника и умень­шает уровень радиопомех в силовой сети. Источник пита­ния не шунтирует выход осциллятора. Поле радиопомех соз­дается только участком сварочного провода, соединяющим го­релку с выходной клеммой осциллятора. Основным недостатком последовательных осцилляторов является ограничение допустимой величины сварочного тока, которая определяется сечением выход­ной обмотки осциллятора.

Исследование работы осцилляторов показало, что импульсы высокого напряжения по форме и местоположению их на кривой тока у каждого осциллятора различны. Устойчивость горения дуги зависит от расположения импульсов на кривой тока. Продолжи­тельность перерывов в горении дуги зависит от того, насколько удален импульс от нулевой точки кривой тока. Если импульсы попадают на нулевые точки кривой, то повторное зажигание дуги происходит легко, если импульсы опережают или запаздывают, то возбуждение дуги затруднено.

Импульсные возбудители обеспечивают более надежное зажи­гание дуги по сравнению с осцилляторами при сварочном токе не ниже 40 а. Подавая 50—100 импульсов в секунду, они не создают существенных радиопомех. Импульсы строго синхронизированы со сварочным током.

Такие возбудители применены в специальных сварочных уста­новках типов УДАР, ИПК и УДГ.

Зажигание дуги в начале сварки возбудители не обеспечи­вают, поэтому для начального зажигания дуги без касания электродом изделия необходимо применять возбудитель в соче­тании с осциллятором, включенным только в начальный момент сварки.

Универсальный сварочный осциллятор ИСО разработан инсти­тутом сельхозмашиностроения в Ростове-на-Дону. Осцилля­тор ИСО можно использовать как последовательный и как парал­лельный. При сварочном токе, не превышающем 350 а, предпочти­тельно последовательное включение осциллятора ИСО в сварочную цепь, при больших токах следует использовать его как парал­лельный.

 

Источники питания для сварки алюминия плавящимся электродом

Сварочный преобразователь ПСГ-500-1, разработанный ВНИИЭСО, предназначен для полуавтоматической и автоматиче­ской сварки постоянным током в среде защитных газов плавящимся электродом. Преобразователь состоит из сварочного генератора постоянного тока и приводного асинхронного трехфазного электро­двигателя с короткозамкнутым ротором. Якорь генератора и ротор электродвигателя смонтированы на общем валу.

Генератор имеет жесткую внешнюю характеристику, получае­мую при подмагничивающем действии последовательной обмотки возбуждения. Обмотка независимого возбуждения питается от сети переменного тока через феррорезонансный стабилизатор напря­жения и селеновый выпрямитель. Полюсные обмотки индуктора, проводящие сварочный ток, выполнены из алюминиевых шин, выводные концы которых армированы медными накладками.

Преобразователь сварочный универсальный ПСУ-500, разра­ботанный ВНИИЭСО, предназначен для автоматической и полу­автоматической сварки под флюсом, сварки плавящимся электро­дом в среде защитных газов, а также для ручной сварки открытой дугой. Преобразователь выпускают в однокорпусном испол­нении. Он состоит из сварочного генератора постоянного тока и приводного асинхронного трехфазного электродвигателя с коротко- замкнутым ротором.

Генератор постоянного тока четырехполюсный независимым возбуждением и последовательной обмоткой для размагничивания. Обмотки независимого возбуждения размещены на двух главных полюсах одноименной полярности; на двух других главных полюсах размещена последовательная размагничивающая об­мотка.

Вследствие размагничивающего действия последовательной об­мотки обеспечивается получение крутопадающих внешних харак­теристик генератора. При отключенной последовательной обмотке возбуждения генератор имеет жесткие внешние характеристики, необходимые для сварки плавящимся электродом в среде защит­ных газов. Переход от падающих внешних характеристик к жест­ким осуществляется переключением пакетного выключателя рас­пределительного устройства и пересоединением двух зажимов на доске генератора.

ИЭС им. Е. О. Патона разработана серия сварочных выпрями­телей типов ВС-200, ВС-300, ВС-400, ВС-500, ВС-600 и ВС-1000 с полого падающими внешними характеристиками.

Выпрямитель типа ВС-300 состоит из трехфазного понижаю­щего трансформатора, выпрямительного блока, набранного из се­леновых шайб, индуктивной катушки, включенной в цепь выпрям­ленного тока, вентилятора и пускорегулирующей аппаратуры. Напряжение в выпрямителе регулируется изменением коэффи­циента трансформации силового трехфазного трансформатора пу­тем ступенчатого изменения числа витков первичной обмотки.

Переключение производится при снятой нагрузке. Выпрями­тель имеет полого падающую внешнюю характеристику. Трехфаз­ный мостовой выпрямитель дает небольшую пульсацию рабочего напряжения и обеспечивает практически постоянную скорость на­растания тока короткого замыкания независимо от момента замы­кания цепи.

Индуктивная катушка обеспечивает снижение скорости нара­стания тока короткого замыкания, поэтому ее применяют для уменьшения разбрызгивания и улучшения формирования шва.

Охлаждение воздушное принудительное.

Полупроводниковые сварочные выпрямители типа ИПП на селеновых вентилях разработаны НИАТом [85]. Выпрямители ИПП-120, ИПП-300, ИПП-500 и ИПП-1000 предназначены для питания сварочной дуги при полуавтоматической и автоматической сварке плавящимся электродом в среде защитных газов. Они имеют жесткую внешнюю характеристику.

Выпрямители ИПП-120, ИПП-300 и ИПП-500 состоят из сило­вого и вольтодобавочного трансформаторов, трехфазного авто­трансформатора с плавным регулированием напряжения от 0 до 380 в, выпрямительного блока, стабилизирующего дросселя ипускорегулирующей аппаратуры. Выпрямители ИПП-120 и ИПП-300 имеют две ступени, а ИПП-500 — четыре ступени регу­лирования сварочного напряжения. Плавное регулирование сва­рочного напряжения в пределах каждой ступени осуществляется автотрансформатором через вольтодобавочный трансформатор. Вы­прямительный блок набран из селеновых элементов, охлаждаемых воздухом. Стабилизирующий дроссель используется для умень­шения разбрызгивания расплавленного металла. Выпрямитель ИПП-1000 состоит из трехфазного автотрансформатора с плавным регулированием напряжения от 0 до 380 в, силового трансформа­тора, выпрямительного блока и пускорегулирующей аппаратуры. В конструкции выпрямителей предусмотрена возможность ди­станционного регулирования сварочного напряжения.

ЦНИИЭЛЕКТРОПРОМ разработал серию выпрямителей типа ВСК, имеющих жесткую (полого падающую в рабочей части) внешнюю характеристику и повышенное напряжение холо­стого хода.

Выпрямители ВСК являются универсальными источниками питания сварочной дуги при автоматической и полуавтоматической сварке в среде защитных газов плавящимся электродом, а также при ручной сварке электродами с покрытием, так как оборудованы поджигающим устройством и стабилизирующим дросселем.

Выпрямители удобны в эксплуатации благодаря широкому диапазону и высокой точности регулирования напряжения под нагрузкой и простоте настройки режима.

Сварочный выпрямитель типа ВДГ-301, разработанный ВНИИЭСО, предназначен для автоматической сварки плавящимся электродом в среде защитных газов. Выпрямитель имеет три сту­пени регулирования напряжения дуги. Плавное регулирование в пределах каждой ступени осуществляется дросселем насыщения и может производиться дистанционно.

При сварке ответственных деталей, когда требуются стабиль­ные напряжение и ток сварки, необходимо применять стабилизиро­ванные источники питания для исключения влияния колебаний напряжения сети. В сварочных преобразователях с жесткими внешними характеристиками стабилизация напряжения сварки достигается питанием обмотки возбуждения генератора от ферро- резонансного стабилизатора напряжения. В случае применения сварочных выпрямителей необходимо стабилизировать напряже­ние на их входе. В ИЭС им. Е. О. Патона для этой цели разработан трехфазный стабилизатор напряжения сети. Точность стабили­зации ±1,5% при колебаниях напряжения от +5 до —10%.

Быстродействие стабилизатора — несколько периодов. Мощность стабилизатора 16 ква, его можно применять совместно со свароч­ными выпрямителями ВС-300, ВСК-300 и др.

Для осуществления импульсно-дуговой сварки плавящимся электродом в среде защитных газов в ИЭС им. Е. О. Патона раз­работан специальный генератор импульсов типа ИПП-1, который применяют при сварке алюминия и его сплавов электродной про­волокой диаметром 1,2—2,0 мм во всех пространственных поло­жениях при совместной работе со сварочными выпрямителями или преобразователями с жесткой внешней характеристикой.

Блок управления обеспечивает автоматическое включение гене­ратора импульсов при сварке, отключение при холостом ходе и длительном коротком замыкании.

Генератор импульсов построен только на статических элементах, имеющих большой срок службы и готовность к работе непосредственно после включения питающего напряжения.

 

Оборудование для сварки алюминия неплавящимся электродом

Полуавтомат ПШВ-1М применяют для сварки изделий толщи­ной 0,5—5 мм во всех пространственных положениях. Он состоит из горелки, ранца и переносного аппаратного шкафа. На ранце установлена катушка для присадочной проволоки и электродвигатель с редуктором. Подающий механизм полуавтомата тянущего типа. На сварочной горелке расположены два подающих ролика.

Вращение от электродвигателя с редуктором с помощью гибкого валика передается на ведущий подающий ролик. Подающие ро­лики протягивают проволоку в горелку. Электрическая схема полуавтомата обеспечивает плавное регулирование скорости подачи присадочной проволоки диаметром 1—2 мм от 5 до 50 м/ч.

В процессе сварки горелка опирается на присадочную про­волоку, которая непрерывно подается в зону сварки. Проволока оплавляется и передвигает полуавтомат вдоль шва со скоростью, равной скорости ее подачи.

Горелка полуавтомата снабжена комплектом сменных цанг, обеспечивающих закрепление неплавящегося электрода диаметром 2—6 мм. Охлаждение горелки водяное.

Полуавтомат ПШВ-3 состоит из горелки — пистолета, подаю­щего механизма с катушкой для присадочной проволоки и аппа­ратного шкафа. Назначение полуавтомата ПШВ-3 и принцип его работы аналогичны ПШВ-1М. Отличительной особенностью этого полуавтомата является использование механизма подачи приса­дочной проволоки толкающего типа.

Автомат АДСВ-1, разработанный НИАТом, предназначен для сварки неплавящимся электродом переменным током ста­лей, титана, алюминиевых и магниевых сплавов и других мате­риалов.

Автомат АДСВ-1 состоит из самоходной тележки-трактора, шкафа электроаппаратуры и устройства для плавного гашения дуги. На тележке расположены сварочная горелка и пульт управ­ления. Механизм головки трактора допускает раздельную регу­лировку присадочной проволоки относительно неплавящегося электрода в вертикальной и горизонтальной плоскостях, преду­смотрена возможность корректировки всей головки относительно стыка в процессе сварки. Электрическая схема автомата обеспе­чивает плавное регулирование скорости подачи присадочной про­волоки и скорости перемещения трактора (скорости сварки) из­менением числа оборотов электродвигателей постоянного тока. С помощью устройства для плавного гашения дуги уменьшается сварочный ток до величины, при которой происходит естественный обрыв дуги без образования кратера и трещин в конце шва. Воз­буждение дуги осуществляется с помощью осциллятора. Горелка автомата снабжена комплектом сменных сопел и цанг для сварки неплавящимся электродом диаметром 2—6 мм. Охлаждение водя­ное.

Автомат АДСВ-2 (НИАТ) предназначен для тех же целей, что и автомат АДСВ-1, но допускает применение как переменного тока, так и постоянного. Несколько изменен диапазон регулирования скорости сварки и скорости подачи присадочной проволоки. Устройство для заварки кратера смонтировано в аппаратном шкафу.

Сварочная головка АГВ-2 автомата АДСВ-2 может быть ис­пользована и самостоятельно. В комплект автомата входят свароч­ная головка, шкаф управления и пульт управления. В зависи­мости от условий работы головку можно устанавливать на консо­лях или кронштейнах. Пульт управления может быть снят и установлен отдельно для удобства работы.

Автоматы АРК-1 и АРК-2, разработанные НИАТом, пред­назначены для дуговой сварки в среде защитных газов постоян­ным и переменным током плавящимся и неплавящимся электро­дами продольных и кольцевых швов деталей из сталей, титана,  алюминиевых и магниевых сплавов. Автоматы состоят из основа­ния с фундаментной плитой, колонны, консоли, самоходной ка­ретки, сварочной головки и шкафа управления.

Консоль автомата вместе со сварочной головкой может повора­чиваться вокруг оси колонны на 360° С. Это позволяет обслужи­вать несколько рабочих мест, расположенных вокруг колонны автомата. Сварочная горелка имеет установочные перемещения по вертикали и поперек шва в пределах около ±25 мм. Сварка может осуществляться с углом наклона сварочной горелки вперед или назад до 10°.

Электрическая схема автомата АРК-1 обеспечивает плавное регулирование скорости сварки и скорости подачи проволоки.

Сварка может производиться двумя способами: неплавящимся электродом с подачей присадочной проволоки или без присадки; плавящимся электродом.

При переходе от одного способа сварки к другому необходимо заменить сварочные горелки и переключить электрическую схему автомата. Пульт управления автоматом размещен на каретке.

Автомат АРК-2 предназначен для тех же целей, что и АРК-1, и имеет аналогичную конструкцию. Он позволяет сваривать изде­лия, имеющие большие габаритные размеры. Расширен диапазон скоростей подачи сварочной проволоки. Для дистанционного вспомогательного управления автоматом предусмотрен переносной пульт управления.

 

Оборудование для сварки алюминия плавящимся электродом

Автомат АДСП-1 тракторного типа предназначен для автоматической сварки сталей, алюминиевых сплавов и других материалов. Автомат позволяет выполнять сварку продольных и кольцевых швов постоянным током. Он состоит из самоходной тележки, на которой установлены головка и пульт управления, аппаратного шкафа. Электрическая схема автомата дает возможность плавно изменять подачу и скорость перемещения трактора (скорости сварки) путем уменьшения или увеличения оборотов ДПТ. Vп не зависит от Uд.

Автомат АДСП-2 предназначен для тех же целей и является модернизированным АДСП-1. Если не требуется перемещение каретки, можно применять отдельно сварочную головку АГП-2 в комплекте со шкафом управления и мобильного ПУ.

Автомат АДПГ-500, разработанный ВНИИЭСО, предназначен для дуговой сварки алюминиевых сплавов в защитных газах постоянным током плавящимся электродом. Автомат состоит из сварочного трактора, шкафа управления и источника питания. Трактор может передвигаться по направляющим или по поверхности изделий. Он состоит из: каретки, механизма подачи сварочной проволоки с двигателем; сварочной головки с горелкой, комплектующейся двумя сменными корпусами, барабана для электродной проволоки и системы механизмов установочных перемещений сварочной головки. Электрическая схема автомата обеспечивает постоянную, плавно регулируемую скорость подачи сварочной проволоки, не зависящую от напряжения на дуге.

Для автоматической сварки алюминия и его сплавов плавящимся электродом в защитных газах можно применять и автоматы-тракторы, предназначенные для сварки под флюсом, такие, как ТС-17М, АДС-500, АДС-1000-2. Для этого их нужно укомплектовать специальными газоэлектрическими горелками и газоподводящей аппаратурой. Одна из конструкций газоэлектри-ческой горелки приведена на рис. 1.

al gazelgorbt

Рис. 1. Газоэлектрическая горелка для сварки деталей большой толщины.

Горелка предназначена для наложения швов, расположенных в глубокой разделке при сварке изделий большой толщины (более 80 мм). Газ в горелке проходит через две камеры расширения, что способствует равномерному выходу его без завихрений. Охлаждение сопла и корпуса водяное, последовательное. Для локализации токоподвода в мундштуке внутрь корпуса и удлинителя вводятся трубки диаметром 10 X 2 мм. Непосредственно к мундштуку вставляется трубка из асбоцемента длиной 30 мм. Далее до конца хвостовика вставляются трубки из фторопласта. Хвостовик наборный для различных толщин с наружным диаметром под клемму токоподвода трактора ТС-17М.

В сварочных полуавтоматах для алюминия и его сплавов применяют тянущие, тянуще-толкающие и толкающие ме-ханизмы подачи  проволоки.

При использовании тянущего механизма подачи ролики, подающие электродную проволоку, расположены непосредственно на сварочной горелке. Благодаря этому мягкая алюминиевая про-волока не проталкивается через шланг, а протягивается, что исключает ее изгиб и застревание в шланге. Привод подающих роликов в этом случае осуществляется от электродвигателя с редуктором, расположенных на горелке, или отдельно, через гибкий валик. В некоторых случаях на горелке располагается и катушка с электродной проволокой. При использовании тянущего механизма подачи сварочной проволоки увеличиваются габаритные размеры и вес горелки. Вес подающего механизма плохо центрируется, горелка тянет руку сварщика в одну сторону. Эти недостатки приводят к быстрой утомляемости сварщика, особенно при выполнении швов в вертикальном и потолочном положении. Горелки полуавтоматов с тянущим механизмом подачи проволоки не пригодны для сварки в труднодоступных местах.

При использовании тянуще-толкающего механизма подачи электродной проволоки, кроме основного толкающего механизмаподачи, на горелке имеется дополнительный тянущий механизм подачи. Полуавтоматы с тянуще-толкающим механизмом подачи проволоки обладают теми же недостатками, что и с тянущим механизмом.

До недавнего времени существовало мнение, что- мягкую алюминиевую проволоку невозможно подавать с постоянной скоростью при использовании толкающей подачи электродной проволоки. Когда при сварке алюминия применяют обычные подающие шланги со стальной спиралью, подача электродной проволоки происходит неравномерно. При прохождении алюминиевой проволоки по шлангу стальная спираль покрывается тонким слоем алюминия, что приводит к резкому увеличению силы трения и частому заеданию проволоки в подающем спиральном шланге. В ре-зультате проволока подается рывками, процесс сварки нарушается, в сварных соединениях возникают дефекты, обгорает токоподводящий мундштук горелки. Для преодоления большой силы сопротивления движению электродной проволоки по шлангу часто подающие ролики делают с насечкой. При этом в подающие шланги попадает большое количество алюминиевой стружки и ухудшаются условия прохождения электродной проволоки через мундштук.

Механизм подрессорирования

В современных полуавтоматах две пары подающих роликов с клиновидными канавками без насечек, механизм подрессорирования и правильно подобранный по диаметру гибкий подающий шланг из фторопласта или капрона обеспечивают подачу электродной проволоки с заданной постоянной скоростью толкающим механизмом подачи на расстояние до 3,5 м. Облегченные газоэлектрические горелки позволяют производить сварку в труднодоступных местах и во всех пространственных положениях.
НИАТом разработана серия сварочных полуавтоматов, предназначенных для сварки алюминия и его сплавов плавящимся электродом в среде защитных газов.

Полуавтомат ПШПА-6 состоит из аппаратного шкафа и сварочной головки. В аппаратном шкафу, кроме электроаппаратуры, находятся газовый клапан, электродвигатель постоянного тока, редуктор и катушка с электродной проволокой. Механизм подачи проволоки расположен на пистолете. Вращение от электродвигателя передается через редуктор с помощью гибкого валика. Регулировка скорости подачи проволоки ступенчатая.

Полуавтомат ПШП-9 состоит из сварочной горелки-пистолета, ранца с катушкой для электродной проволоки и шкафа управления. Механизм подачи проволоки тянущего типа расположен на пистолете. Электродвигатель постоянного тока через редуктор приводит во вращение подающий ролик. Проволока диаметром 1—2,5 мм по гибкому шлангу протягивается от ранца к горелке.
Полуавтомат

Полуавтомат ПШП-10 состоит из сварочной горелки-пистолета, кронштейна с катушкой для электродной проволоки и шкафа управления. Сварочная проволока диаметром 1,0—2,5 мм от катушки к сварочной головке подается по гибкому шлангу с помощью электродвигателя постоянного тока, установленного на сварочной головке. Принципиальная схема полуавтомата обеспечивает плавное регулирование Vп. Сварочная головка полуавтомата имеет водяное охлаждение.

У    полуавтомата ПШП-11 на кронштейн с катушкой для электродной проволоки вынесен и электродвигатель с редуктором механизма подачи проволоки.

Полуавтомат ПШП-21 состоит из сварочной горелки, механизма подачи электродной проволоки и шкафа управления. Сварочная проволока диаметром 0,8—2 мм от катушки к горелке подается по гибкому шлангу через правйльное устройство с помощью электродвигателя постоянного тока.

Электрическая схема обеспечивает плавное регулирование скорости подачи проволоки. Предусмотрено также ступенчатое изменение скорости подачи проволоки сменными шестернями.    

Полуавтомат ПШП-31 состоит из сварочной головки и шкафа управления. На горелке-пистолете расположены механизмы подачи проволоки и катушка для. электродной проволоки. Механизм подачи проволоки работает от малогабаритного ДПТ. Регулирование скорости подачи проволоки плавное. Полуавтомат предназначен для сварки электродной проволокой малого диаметра 0,4—0,8 мм. В качестве источника питания сварочной дуги используется генератор ГСР-150.

Полуавтомат ПДА-300 конструкции ВНИИЭСО предназначен для дуговой сварки плавящимся электродом алюминиевых сплавов в среде защитных газов. Он состоит из сварочной горелки пистолетного типа со встроенным механизмом подачи проволоки, шлангов и шкафа управления.

Для улучшения подачи мягкой алюминиевой проволоки в зону дуги в полуавтомате ПДА-300 использован тянуще-толкающий механизм.

Двигатель основного механизма подачи через редуктор с подающими роликами проталкивает электродную проволоку внутрь гибкого шланга.

Вспомогательный механизм подачи малой мощности встроен в пистолет. С помощью роликового устройства он вытягивает проволоку из шланга и подает ее через мундштук горелки в зону дуги. На основном механизме подачи закрепляется кассета сварочной проволокой.

Электрическая схема обеспечивает стабильную подачу электродной проволоки двумя синхронно работающими электродвигателями с постоянной плавно регулируемой скоростью. Для исключения влияния колебаний напряжения питающей сети на Vп, питание электрической схемы полу-автомата осуществляется через ферромагнитный стабилизатор напряжения. Охлаждение горелки, металлических наконечников и токоподводящего шланга водяное.

Полуавтомат ПДА-180-2 бесшланговый. Механизм подачи электродной проволоки встроен в сварочную горелку и состоит из редуктора с электродвигателем постоянного тока и роликового устройства, подающего алюминиевую электродную проволоку через токоподводящую трубку к месту сварки, катушка с электродной проволокой укрепляется на корпусе головки. Полуавтомат состоит из сварочной головки, распределительной коробки и шкафа управления.

Полуавтомат типа А-701, разработанный ИЭС им. Е. О. Патона, предназначен для сварки в среде защитных газов плавящимся электродом постоянным током на обратной полярности алюминия и его сплавов. Полуавтомат состоит из сварочной горелки- пистолета, катушки в защитном футляре для электродной проволоки и шкафа управления. Сварочная головка состоит из механизма подачи электродной проволоки и горелки. В рукоятку горелки вмонтирована кнопка включения электродвигателя механизма подачи, электромагнитного газового клапана и сварочного тока. Проволока от катушки к горелке подается по гибкому шлангу. Регулирование скорости подачи электродной проволоки плавное.

Сварочный ранцевый монтажный полуавтомат ПРМ-4, разработанный НИКИМТом, предназначен для сварки стальных, алюминиевых и медных конструкций в монтажных условиях (рис. 2). Отличие полуавтомата ПРМ-4 — ранцевое исполнение, малый вес ранца и аппаратного ящика, что позволяет перевести ручную сварку на полуавтоматическую почти во всех случаях сварки в монтажных условиях. Полуавтомат состоит из ранца (рис. 3), на котором крепится подающий механизм и кассета для электродной проволоки, газоэлектрической горелки и аппаратного ящика.При разработке полуавтомата основное внимание было обращено на получение стабильной подачи жесткой и мягкой проволоки, а также на уменьшение веса и размеров редуктора. Наличие двух пар синхронно вращающихся подающих роликов сравнительно большого диаметра и подрессоривания позволило снизить удельное давление на проволоку.

al prm4

Рис. 2. Полуавтомат ПРМ-4.

al ranecprm4

Рис. 3. Ранец для ПРМ-4.

Разработанный для ПРМ-4 шланг подачи электродной проволоки выполнен из фторопласта, он обладает достаточной жесткостью, чтобы исключить переломы и крутые изгибы. Сила трения электродной проволоки при прохождении ее по фторопластовому шлангу незначительная. Такой гибкий шланг исключает возможность закорачивания электродной проволоки, не боится низких температур, имеет малый вес и обладает хорошей износостойкостью.

Электрическая схема полуавтомата ПРМ-4 (рис. 4) обеспечивает дистанционное плавное регулирование скорости подачи электродной проволоки. Диапазон регулирования 1 : 12.

al el shema prm4

Рис. 4. Электрическая схема сварочного полуавтомата ПРМ-4.

При изменении напряжения питающей сети на +5-4—25% (что часто происходит на монтажных площадках) скорость подачи электродной проволоки стабилизируется в пределах ±5% от заданной за счет отрицательной обратной связи по напряжению в магнитном усилителе.

При изменении нагрузки на валу электродвигателя механизма подачи на 25—100% скорость подачи электродной проволоки изменяется в пределах ±6% от установленной.Электрическая схема полуавтомата обеспечивает установочные перемещения электродной проволоки вперед—назад и динамическое торможение двигателя подачи проволоки для быстрой остановки проволоки после прекращения сварки.

Подача защитного газа автоматически включается для обдува места сварки до возбуждения дуги и выключается через некоторое время после отключения сварочного тока, что обеспечивает защиту металла шва от окисления до остывания его ниже опасных температур.

Благодаря малым размерам и весу узлов сварщик может сам переносить полуавтомат с ящиком управления, кабелями и шлангами.

 

Материалы с сайта: http://ruswelding.com


Добавление товара в корзину
Данная опция доступна только зарегистрированным пользователям!
Добавление закладки
Данная опция доступна только зарегистрированным пользователям!
Отправить ссылку на e-mail
E-mail адресата:
Ваше имя:
Ваш E-mail:
Тема
Введите код с картинки:
captcha

Хочу дешевле!
Товар: Здесь название товара (сложением полей)
 
*Ссылка или контактная информация о конкурирующем предложении:
*Ваша цена: руб.
*Требуемое количество: кг
*E-mail или телефон:
Комментарий:
*Введите код с картинки: captcha

* - обязательно для заполнения

Вход на сайт
Забыли пароль?
Регистрация